seldonian.models.sklearn_lr.SkLearnLinearRegressor¶
- class SkLearnLinearRegressor(**kwargs)¶
Bases:
SupervisedSkLearnBaseModel
- __init__(**kwargs)¶
Implements a linear regressor in Scikit-learn
- __repr__()¶
Return repr(self).
Methods
- backward_pass(theta, X)¶
Return the Jacobian d(forward_pass)_i/dtheta_{j+1}, where i run over datapoints and j run over model parameters, keeping in mind that there is a y-intercept term (hence the j+1 not j) in the predict function
- create_model(**kwargs)¶
Create the scikit-learn linear regressor
- forward_pass(X)¶
Make predictions given features, X
- get_model_params(*args)¶
Return weights of the model as a flattened 1D array
- predict(theta, X, **kwargs)¶
Do a forward pass through the sklearn model. Must convert back to numpy array before returning
- Parameters:
theta (numpy ndarray) – model weights
X (numpy ndarray) – model features
- Returns:
model predictions
- Return type:
numpy ndarray same shape as labels
- update_model_params(theta, **kwargs)¶
Update all model parameters using theta, which must be reshaped
- Parameters:
theta (numpy ndarray) – model weights