Seldonian Experiments documentation¶
Welcome to the documentation for the Seldonian Experiments library. This library is designed to help you evaluate the performance and safety of Seldonian algorithms. The source code is hosted on GitHub.
This library makes heavy use of the Seldonian Engine library, the core library for running Seldonian algorithms.
If you are completely new to this library, see the Overview.
Table of contents¶
- Overview
 - API
- experiments
- experiments.base_example
 - experiments.baselines
- experiments.baselines.baselines
 - experiments.baselines.decision_tree
 - experiments.baselines.decision_tree_leaf_tuning
- experiments.baselines.decision_tree_leaf_tuning.DecisionTreeClassifierLeafTuningBaseline
DecisionTreeClassifierLeafTuningBaselineDecisionTreeClassifierLeafTuningBaseline.__init__()DecisionTreeClassifierLeafTuningBaseline.__repr__()DecisionTreeClassifierLeafTuningBaseline.adam()DecisionTreeClassifierLeafTuningBaseline.fit()DecisionTreeClassifierLeafTuningBaseline.forward_pass()DecisionTreeClassifierLeafTuningBaseline.get_jacobian()DecisionTreeClassifierLeafTuningBaseline.get_leaf_node_probs()DecisionTreeClassifierLeafTuningBaseline.predict()DecisionTreeClassifierLeafTuningBaseline.set_leaf_node_values()DecisionTreeClassifierLeafTuningBaseline.train()DecisionTreeClassifierLeafTuningBaseline.wrapped_primary_objective()
 
 - experiments.baselines.decision_tree_leaf_tuning.DecisionTreeClassifierLeafTuningBaseline
 - experiments.baselines.diabetes_US_baseline
 - experiments.baselines.fitted_Q
- experiments.baselines.fitted_Q.ApproximateTabularFittedQBaseline
ApproximateTabularFittedQBaselineApproximateTabularFittedQBaseline.__init__()ApproximateTabularFittedQBaseline.__repr__()ApproximateTabularFittedQBaseline.get_max_q()ApproximateTabularFittedQBaseline.get_next_obs()ApproximateTabularFittedQBaseline.get_probs_from_observations_and_actions()ApproximateTabularFittedQBaseline.get_regressor_weights()ApproximateTabularFittedQBaseline.get_target()ApproximateTabularFittedQBaseline.instantiate_regressor()ApproximateTabularFittedQBaseline.make_X()ApproximateTabularFittedQBaseline.make_regression_dataset()ApproximateTabularFittedQBaseline.make_y()ApproximateTabularFittedQBaseline.one_hot_encode()ApproximateTabularFittedQBaseline.set_new_params()ApproximateTabularFittedQBaseline.set_q_table()ApproximateTabularFittedQBaseline.stopping_criteria_met()ApproximateTabularFittedQBaseline.update_Q_weights()
 - experiments.baselines.fitted_Q.BaseFittedQBaseline
BaseFittedQBaselineBaseFittedQBaseline.__init__()BaseFittedQBaseline.__repr__()BaseFittedQBaseline.get_max_q()BaseFittedQBaseline.get_next_obs()BaseFittedQBaseline.get_probs_from_observations_and_actions()BaseFittedQBaseline.get_target()BaseFittedQBaseline.instantiate_regressor()BaseFittedQBaseline.make_X()BaseFittedQBaseline.make_regression_dataset()BaseFittedQBaseline.make_y()BaseFittedQBaseline.set_new_params()BaseFittedQBaseline.stopping_criteria_met()BaseFittedQBaseline.update_Q_weights()
 - experiments.baselines.fitted_Q.ExactTabularFittedQBaseline
ExactTabularFittedQBaselineExactTabularFittedQBaseline.__init__()ExactTabularFittedQBaseline.__repr__()ExactTabularFittedQBaseline.get_max_q()ExactTabularFittedQBaseline.get_next_obs()ExactTabularFittedQBaseline.get_probs_from_observations_and_actions()ExactTabularFittedQBaseline.get_regressor_weights()ExactTabularFittedQBaseline.get_target()ExactTabularFittedQBaseline.instantiate_regressor()ExactTabularFittedQBaseline.make_X()ExactTabularFittedQBaseline.make_regression_dataset()ExactTabularFittedQBaseline.make_y()ExactTabularFittedQBaseline.one_hot_encode()ExactTabularFittedQBaseline.set_new_params()ExactTabularFittedQBaseline.set_q_table()ExactTabularFittedQBaseline.stopping_criteria_met()ExactTabularFittedQBaseline.update_Q_weights()
 
 - experiments.baselines.fitted_Q.ApproximateTabularFittedQBaseline
 - experiments.baselines.linear_regression
 - experiments.baselines.logistic_regression
 - experiments.baselines.random_classifiers
 - experiments.baselines.random_forest
 
 - experiments.experiment_utils
- experiments.experiment_utils.batch_predictions
 - experiments.experiment_utils.batch_predictions_custom_regime
 - experiments.experiment_utils.generate_behavior_policy_episodes
 - experiments.experiment_utils.generate_episodes_and_calc_J
 - experiments.experiment_utils.has_failed
 - experiments.experiment_utils.load_regenerated_episodes
 - experiments.experiment_utils.load_resampled_datasets
 - experiments.experiment_utils.make_batch_epoch_dict_fixedniter
 - experiments.experiment_utils.make_batch_epoch_dict_min_sample_repeat
 - experiments.experiment_utils.prep_custom_data
 - experiments.experiment_utils.prep_data_for_fairlearn
 - experiments.experiment_utils.prep_feat_labels
 - experiments.experiment_utils.prep_feat_labels_for_baseline
 - experiments.experiment_utils.setup_SA_spec_for_exp
 - experiments.experiment_utils.supervised_initial_solution_fn
 - experiments.experiment_utils.trial_arg_chunker
 
 - experiments.experiments
- experiments.experiments.BaselineExperiment
 - experiments.experiments.Experiment
 - experiments.experiments.FairlearnExperiment
FairlearnExperimentFairlearnExperiment.__init__()FairlearnExperiment.__repr__()FairlearnExperiment.aggregate_results()FairlearnExperiment.evaluate_constraint_function()FairlearnExperiment.get_fairlearn_predictions()FairlearnExperiment.run_experiment()FairlearnExperiment.run_fairlearn_trial()FairlearnExperiment.write_trial_result()
 - experiments.experiments.SeldonianExperiment
SeldonianExperimentSeldonianExperiment.__init__()SeldonianExperiment.__repr__()SeldonianExperiment.aggregate_results()SeldonianExperiment.evaluate_constraint_functions()SeldonianExperiment.run_QSA_trial()SeldonianExperiment.run_experiment()SeldonianExperiment.run_trials_par()SeldonianExperiment.write_trial_result()
 
 - experiments.generate_plots
- experiments.generate_plots.CustomPlotGenerator
 - experiments.generate_plots.PlotGenerator
 - experiments.generate_plots.RLPlotGenerator
 - experiments.generate_plots.SupervisedPlotGenerator
SupervisedPlotGeneratorSupervisedPlotGenerator.__init__()SupervisedPlotGenerator.__repr__()SupervisedPlotGenerator.generate_resampled_datasets()SupervisedPlotGenerator.generate_trial_datasets()SupervisedPlotGenerator.make_plots()SupervisedPlotGenerator.run_baseline_experiment()SupervisedPlotGenerator.run_fairlearn_experiment()SupervisedPlotGenerator.run_headless_seldonian_experiment()SupervisedPlotGenerator.run_seldonian_experiment()SupervisedPlotGenerator.validate_constraint_eval_kwargs()
 
 - experiments.headless_example
 - experiments.perf_eval_funcs
 
 
 - experiments