Seldonian Experiments documentation¶
Welcome to the documentation for the Seldonian Experiments library. This library is designed to help you evaluate the performance and safety of Seldonian algorithms. The source code is hosted on GitHub.
This library makes heavy use of the Seldonian Engine library, the core library for running Seldonian algorithms.
If you are completely new to this library, see the Overview.
Table of contents¶
- Overview
- API
- experiments
- experiments.base_example
- experiments.baselines
- experiments.baselines.baselines
- experiments.baselines.decision_tree
- experiments.baselines.decision_tree_leaf_tuning
- experiments.baselines.decision_tree_leaf_tuning.DecisionTreeClassifierLeafTuningBaseline
DecisionTreeClassifierLeafTuningBaseline
DecisionTreeClassifierLeafTuningBaseline.__init__()
DecisionTreeClassifierLeafTuningBaseline.__repr__()
DecisionTreeClassifierLeafTuningBaseline.adam()
DecisionTreeClassifierLeafTuningBaseline.fit()
DecisionTreeClassifierLeafTuningBaseline.forward_pass()
DecisionTreeClassifierLeafTuningBaseline.get_jacobian()
DecisionTreeClassifierLeafTuningBaseline.get_leaf_node_probs()
DecisionTreeClassifierLeafTuningBaseline.predict()
DecisionTreeClassifierLeafTuningBaseline.set_leaf_node_values()
DecisionTreeClassifierLeafTuningBaseline.train()
DecisionTreeClassifierLeafTuningBaseline.wrapped_primary_objective()
- experiments.baselines.decision_tree_leaf_tuning.DecisionTreeClassifierLeafTuningBaseline
- experiments.baselines.diabetes_US_baseline
- experiments.baselines.fitted_Q
- experiments.baselines.fitted_Q.ApproximateTabularFittedQBaseline
ApproximateTabularFittedQBaseline
ApproximateTabularFittedQBaseline.__init__()
ApproximateTabularFittedQBaseline.__repr__()
ApproximateTabularFittedQBaseline.get_max_q()
ApproximateTabularFittedQBaseline.get_next_obs()
ApproximateTabularFittedQBaseline.get_probs_from_observations_and_actions()
ApproximateTabularFittedQBaseline.get_regressor_weights()
ApproximateTabularFittedQBaseline.get_target()
ApproximateTabularFittedQBaseline.instantiate_regressor()
ApproximateTabularFittedQBaseline.make_X()
ApproximateTabularFittedQBaseline.make_regression_dataset()
ApproximateTabularFittedQBaseline.make_y()
ApproximateTabularFittedQBaseline.one_hot_encode()
ApproximateTabularFittedQBaseline.set_new_params()
ApproximateTabularFittedQBaseline.set_q_table()
ApproximateTabularFittedQBaseline.stopping_criteria_met()
ApproximateTabularFittedQBaseline.update_Q_weights()
- experiments.baselines.fitted_Q.BaseFittedQBaseline
BaseFittedQBaseline
BaseFittedQBaseline.__init__()
BaseFittedQBaseline.__repr__()
BaseFittedQBaseline.get_max_q()
BaseFittedQBaseline.get_next_obs()
BaseFittedQBaseline.get_probs_from_observations_and_actions()
BaseFittedQBaseline.get_target()
BaseFittedQBaseline.instantiate_regressor()
BaseFittedQBaseline.make_X()
BaseFittedQBaseline.make_regression_dataset()
BaseFittedQBaseline.make_y()
BaseFittedQBaseline.set_new_params()
BaseFittedQBaseline.stopping_criteria_met()
BaseFittedQBaseline.update_Q_weights()
- experiments.baselines.fitted_Q.ExactTabularFittedQBaseline
ExactTabularFittedQBaseline
ExactTabularFittedQBaseline.__init__()
ExactTabularFittedQBaseline.__repr__()
ExactTabularFittedQBaseline.get_max_q()
ExactTabularFittedQBaseline.get_next_obs()
ExactTabularFittedQBaseline.get_probs_from_observations_and_actions()
ExactTabularFittedQBaseline.get_regressor_weights()
ExactTabularFittedQBaseline.get_target()
ExactTabularFittedQBaseline.instantiate_regressor()
ExactTabularFittedQBaseline.make_X()
ExactTabularFittedQBaseline.make_regression_dataset()
ExactTabularFittedQBaseline.make_y()
ExactTabularFittedQBaseline.one_hot_encode()
ExactTabularFittedQBaseline.set_new_params()
ExactTabularFittedQBaseline.set_q_table()
ExactTabularFittedQBaseline.stopping_criteria_met()
ExactTabularFittedQBaseline.update_Q_weights()
- experiments.baselines.fitted_Q.ApproximateTabularFittedQBaseline
- experiments.baselines.linear_regression
- experiments.baselines.logistic_regression
- experiments.baselines.random_classifiers
- experiments.baselines.random_forest
- experiments.experiment_utils
- experiments.experiment_utils.batch_predictions
- experiments.experiment_utils.batch_predictions_custom_regime
- experiments.experiment_utils.generate_behavior_policy_episodes
- experiments.experiment_utils.generate_episodes_and_calc_J
- experiments.experiment_utils.has_failed
- experiments.experiment_utils.load_regenerated_episodes
- experiments.experiment_utils.load_resampled_datasets
- experiments.experiment_utils.make_batch_epoch_dict_fixedniter
- experiments.experiment_utils.make_batch_epoch_dict_min_sample_repeat
- experiments.experiment_utils.prep_custom_data
- experiments.experiment_utils.prep_data_for_fairlearn
- experiments.experiment_utils.prep_feat_labels
- experiments.experiment_utils.prep_feat_labels_for_baseline
- experiments.experiment_utils.setup_SA_spec_for_exp
- experiments.experiment_utils.supervised_initial_solution_fn
- experiments.experiment_utils.trial_arg_chunker
- experiments.experiments
- experiments.experiments.BaselineExperiment
- experiments.experiments.Experiment
- experiments.experiments.FairlearnExperiment
FairlearnExperiment
FairlearnExperiment.__init__()
FairlearnExperiment.__repr__()
FairlearnExperiment.aggregate_results()
FairlearnExperiment.evaluate_constraint_function()
FairlearnExperiment.get_fairlearn_predictions()
FairlearnExperiment.run_experiment()
FairlearnExperiment.run_fairlearn_trial()
FairlearnExperiment.write_trial_result()
- experiments.experiments.SeldonianExperiment
SeldonianExperiment
SeldonianExperiment.__init__()
SeldonianExperiment.__repr__()
SeldonianExperiment.aggregate_results()
SeldonianExperiment.evaluate_constraint_functions()
SeldonianExperiment.run_QSA_trial()
SeldonianExperiment.run_experiment()
SeldonianExperiment.run_trials_par()
SeldonianExperiment.write_trial_result()
- experiments.generate_plots
- experiments.generate_plots.CustomPlotGenerator
- experiments.generate_plots.PlotGenerator
- experiments.generate_plots.RLPlotGenerator
- experiments.generate_plots.SupervisedPlotGenerator
SupervisedPlotGenerator
SupervisedPlotGenerator.__init__()
SupervisedPlotGenerator.__repr__()
SupervisedPlotGenerator.generate_resampled_datasets()
SupervisedPlotGenerator.generate_trial_datasets()
SupervisedPlotGenerator.make_plots()
SupervisedPlotGenerator.run_baseline_experiment()
SupervisedPlotGenerator.run_fairlearn_experiment()
SupervisedPlotGenerator.run_headless_seldonian_experiment()
SupervisedPlotGenerator.run_seldonian_experiment()
SupervisedPlotGenerator.validate_constraint_eval_kwargs()
- experiments.headless_example
- experiments.perf_eval_funcs
- experiments